Discounting Axioms Imply Risk Neutrality

Matthew J. Sobel Dept. of Operations; Dept. of EE & Computer Sci. Case Western Reserve University

Major Decisions

- Business, public policy, personal choices
- Outcomes uncertain and revealed over time
- Stochastic processes

Background

- Models of intertemporal preference
 - Paul Samuelson
 - Tjallings C. Koopmans
 - A. C. Williams and J. I. Nassar
- Intertemporal preference +> Risk preference
- Models of risk preference
 - John von Neumann and Oscar Morgenstern
 - Israel Herstein and John Milnor
- Are time and risk preferences logically independent?
- Robert Rosenthal's question

- Preferences among stochastic processes
- Important examples
- Axioms
- Preferences among r.v.s
- Discounting theorem
- Risk neutrality theorem
- Composition is NSC for risk neutrality
- Summary

Preferences as Binary Relations

Start with a probability space, and let

V be a real vector space of stochastic processes $X = (X_1, X_2, ...)$ including deterministic sequences of scalars $x = (x_1, x_2, ...)$ with zero element $\theta = (0, 0, ...)$.

There is a DM (decision maker) whose preferences among stochastic processes are expressed as a binary relation \succeq on V.

Williams-Nassar and Koopmans Examples

EXPECTED PRESENT VALUE:

 $X = (X_1, X_2, ..., X_n) \text{ is weakly preferred to } Y = (Y_1, Y_2, ..., Y_n)$ if $E\left(\sum_{j=1}^n \beta_j X_j\right) \ge E\left(\sum_{j=1}^n \beta_j Y_j\right)$

where $\{\beta_i\}$ are *discount* factors.

EXPECTED DISCOUNTED FELICITY:

 $X = (X_1, X_2, ..., X_n)$ is weakly preferred to $Y = (Y_1, Y_2, ..., Y_n)$

if
$$E\left(\sum_{j=1}^{n}\beta_{j}u(X_{j})\right) \ge E\left(\sum_{j=1}^{n}\beta_{j}u(Y_{j})\right)$$

where $u(\cdot)$ is a *felicity* function.

Notation

Sequences of numbers:

$$x = (x_1, x_{2,..., x_n})$$
 and $y = (y_1, y_{2,..., y_n})$

The decision maker (DM) weakly prefers x to y: $x \succeq y$ or $y \preceq x$ The DM neither prefers x to y nor y to x (indifference):

 $x \approx y$

Sequences of random variables:

 $X = (X_1, X_{2,...,} X_n) \text{ and } Y = (Y_1, Y_{2,...,} Y_n)$ The DM weakly prefers X to Y: $X \succeq Y$ The DM neither prefers X to Y nor Y to X (indifference): $X \sim Y$ The DM strongly prefers X to Y (X \succeq Y but not Y \succeq X : $X \succ Y$

Axiom Antics

(A1) Rationality: \succeq is reflexive, transitive, and complete on V.

(A2) Decomposition: $X - Y \succeq \theta \implies X \succeq Y$ for all $X, Y \in V$.

(A3) Continuity: $\{a \in \Re : aX - Y \succeq \theta\}$ is closed for all $X, Y \in V$.

(A4) Non-triviality: $(1,0,0,...,0) \succ \theta$.

Decomposition Axiom

(A2) *Decomposition*: $X - Y \succeq \theta \implies X \succeq Y$.

This is the most controversial and objectionable axiom.

If $\theta \leq X$ then (A2) implies $\theta \leq X \leq 2X \leq 3X \leq \cdots$

So (\preceq, V) cannot be consistent with preferences that welcome small gambles but avoid large ones!

Decomposition and Discounting

(A2) Decomposition: $X - Y \succeq \theta \implies X \succeq Y$ (A2) \Leftrightarrow :

X is as good as the status quo $(X \succeq \theta)$ if and only if for all *Y*, $X + Y \succeq Y$.

- (A2) is assumed in **every** axiomatic theory that yields discounting including Koopmans and Williams-Nassar.
- (A2) is not objectionable in deterministic settings.

Decomposition and its Converse

(A2) *Decomposition*: $X - Y \succeq \theta \implies X \succeq Y$

(A2) \Leftrightarrow [X is as good as the status quo only if incrementing every Y with X is at least as good as Y alone: $X \succ \theta \Rightarrow X + Y \succ Y$].

 $(A2^{C}) \quad Composition : \quad X \succeq Y \implies X - Y \succeq \theta$ $(A2^{C}) \iff [X \text{ is no better than the status quo if there is any Y} \\ \text{that is at least as good as } Y \text{ augmented by } X: \\ \text{if there is any } Y \succ Y + X \text{ then } X \prec \theta].$

Preferences Among R.V.s

Given stochastic processes *X* and *Y* and discount factors $\{\beta_i\}$,

the present values
$$\sum_{j=1}^{n} \beta_j X_j$$
 and $\sum_{j=1}^{n} \beta_j Y_j$ are random variables.

Let S denote the set of all random variables.

Notice that $(C,0,0,...,0) \in V$ for every $C \in S$.

A preference ordering \succeq on V (among stochastic processes) induces the following preference ordering \ge on S (among random variables):

 $A \ge B \iff (A,0,0,...,0) \succeq (B,0,0,...,0).$ What properties of (\ge, S) are implied by the axioms for (\succeq, V) ?

Discounting Theorem

If (\succeq, V) satisfies axioms (A1) - (A4), then there are unique discount factors $\beta_1, \beta_2, ..., \beta_n$ such that

 $X = (X_1, X_2, \dots, X_n) \succeq Y = (Y_1, Y_2, \dots, Y_n) \qquad \Leftrightarrow \qquad \sum_{j=1}^n \beta_j X_j \ge \sum_{j=1}^n \beta_j Y_j$

These are the weakest known sufficient conditions for discounting in stochastic *or* deterministic settings.

Discounting Theorem - Proof

If (\succeq, V) satisfies axioms (A1) - (A4), then there are unique discount factors $\beta_1, \beta_2, ..., \beta_n$ such that

$$X = (X_1, X_2, \dots, X_n) \succeq Y = (Y_1, Y_2, \dots, Y_n) \qquad \Leftrightarrow \qquad \sum_{j=1}^{n} \beta_j X_j \ge \sum_{j=1}^{n} \beta_j Y_j$$

Most of the proof uses the axioms to build an algebra for (\succeq, V) .

Felicity and Utility Functions

A function $u : \mathbb{R} \to \mathbb{R}$ is a *felicity* function for $(\geq \geq, S)$ if $A \geq \geq B \iff E[u(A)] \geq E[u(B)].$

A function $w : S \to \mathbb{R}$ is a (von Neumann-Morgenstern) utility function if $A \ge B \iff w(A) \ge w(B)$.

So if there is a felicity function, then there is a utility function w(A) = E(u(A)].

Axioms Reminder

(A1) Rationality: \succeq is reflexive, transitive, and complete on V.

(A2) *Decomposition*: $X - Y \succeq \theta \Rightarrow X \succeq Y$ for all $X, Y \in V$.

(A3) Continuity: $\{a \in \Re : aX - Y \succeq \theta\}$ is closed for all $X, Y \in V$.

(A4) Non-triviality: $(1,0,0,...,0) \succ \theta$.

(A2^C) Composition: $X \succeq Y \Rightarrow X - Y \succeq \theta$ for all $X, Y \in V$.

Risk Neutrality Theorem

If (\succeq, V) satisfies axioms (A1), (A2), (A3), and (A4), then the following properties are equivalent:

1) (\succeq , *V*) satisfies the composition axiom, namely ($A2^{C}$).

2) There is a felicity function $u(\cdot)$ for (\geq, S) .

3) There are discount factors $\{\beta_i\}$ such that

$$X \succeq Y \quad \Leftrightarrow \quad E\left[\sum_{j=1}^{n} \beta_{j} X_{j}\right] \ge E\left[\sum_{j=1}^{n} \beta_{j} Y_{j}\right]$$

Risk Neutrality Theorem - proof

If (\succeq, V) satisfies axioms (A1), (A2), (A3), and (A4), then the following properties are equivalent:

1) (\succeq , *V*) satisfies the composition axiom, namely ($A2^{C}$).

2) There is a felicity function $u(\cdot)$ for (\geq, S) .

3) There are discount factors $\{\beta_i\}$ such that

$$X \succeq Y \quad \Leftrightarrow \quad E\left[\sum_{j=1}^{n} \beta_{j} X_{j}\right] \ge E\left[\sum_{j=1}^{n} \beta_{j} Y_{j}\right]$$

Key steps in the proof: for all r.v.s A and B, u(A) = -u(-A)u(A+B) = u(A) + u(B)

Conundrum

If (\succeq, V) satisfies axioms (A1), (A2), (A3), and (A4), then the following properties are equivalent:

1) (\succeq , *V*) satisfies the composition axiom, namely ($A2^{C}$).

2) There is a felicity function $u(\cdot)$ on (\geq, S) .

3) There are discount factors $\{\beta_j\}$ such that $X \succeq Y \Leftrightarrow E\left[\sum_{j=1}^n \beta_j X_j\right] \ge E\left[\sum_{j=1}^n \beta_j Y_j\right]$

- Axioms (A1) (A4) are sufficient for discounting.
- Are they necessary or can they be weakened?
- With composition, they imply risk neutrality.
- Can "interesting" preferences satisfy (A1)-(A4) but not (A2^C)?

Multiple Attributes

The results remain valid if the components of $X = (X_1, X_2, ...)$ are random vectors instead of real r.v.s.

Recent Result with James Alexander

- If a binary relation on a real vector space satisfies the four axioms, then there is a utility function f · u on V in which f: R ⇒ R is linear if and only if the binary relation satisfies the composition axiom. That is, composition is necessary and sufficient for risk neutrality (given (A1) (A4)).
- So if preferences satisfy the four axioms but not composition, then there is a nonlinear felicity function u such that

$$X \succeq Y \quad \Leftrightarrow \quad E[u(\sum \beta_t X_t)] \ge E[u(\sum \beta_t Y_t)]$$

Summary - 1

Preferences are risk neutral if they satisfy axioms that are the principal justification for discounting with a nonlinear felicity function. The maximization of $E\left[\sum_{j} \beta_{j} u(X_{j})\right]$ is self-contradictory

if $u(\cdot)$ is nonlinear.

There is a logical basis for discounting without risk neutrality only if the four axioms (A1) – (A4) are satisfied and the composition axiom is *not* satisfied.

Summary - 2

- There is a logical basis for discounting without risk neutrality only if the four axioms (A1) – (A4) are satisfied and the composition axiom is *not* satisfied.
- In that case, there is a slightly stronger logical basis for

$$X \succeq Y \quad \Leftrightarrow \quad E[u(\sum \beta_t X_t)] \ge E[u(\sum \beta_t Y_t)]$$

than for

 $X \succeq Y \quad \Leftrightarrow \quad E[\sum \beta_t u(X_t)] \ge E[u(\sum \beta_t u(Y_t)].$

Columbia – My Good Fortune

- George Kimball, B. O. Koopman
- Samuel Eilenberg, Serge Lang
- Morton Klein, Pete Veinott
- Cyrus Derman